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Euler’s Rediscovery of e

David Ruch∗

December 7, 2022

1 Introduction

The famous constant e is used in countless applications across many fields of mathematics, and
resurfaces periodically in the evolution of mathematics. In 1683, Jacob Bernoulli (1655–1705) essen-
tially found e while studying compound interest and evaluating the sequence (1 + 1/j)j as j → ∞.
By 1697, his brother Johann Bernoulli (1667–1748) was working with the calculus of exponentials
[Bernoulli, 1697]. However, a full understanding was missing.

The connection between logarithms and exponential functions was still not well understood, and
mathematicians couldn’t agree on how to define logarithms of negative numbers. Leonhard Euler
(1707–1783) would later clear up the controversy surrounding logarithms of negative numbers, and
clarify the idea of a logarithmic function, in a paper written for the Berlin Academy of Sciences
[Euler, 1749].

In 1748, Euler published one of his most influential works, Introductio in Analysin Infinitorum
(Introduction to Analysis of the Infinite), [Euler, 1748]. Prior to the early nineteenth century, the
word “analysis” that appears in the title generally referred to what we would today call “calculus.”
In the Introductio, Euler introduced the general function concept as the foundation of calculus.1
While it was explicitly written as a “precalculus textbook” to prepare his readers for the study of
calculus, Euler nevertheless emphasized the use of infinite series throughout the Introductio.2 In
Chapter VI, he discussed logarithms for various bases and their properties. Logarithms were well
known in Euler’s day, and tables of logarithms for base 10 and other bases had been compiled, as no
scientific calculators were available at that time.3 Euler also examined exponential and logarithmic
functions in Chapter VII, especially as infinite series. In this project, we are particularly interested
in how e appeared naturally in Euler’s development of these functions.

2 Euler’s Definition of e

Part of Euler’s challenge in working with logarithmic functions was to find a logarithmic base a
for which infinite series expansions are convenient. It is here that Euler derived e, both as the

∗Department of Mathematical and Computer Sciences, Metropolitan State University of Denver, Denver, CO, 80217;
ruch@msudenver.edu.

1Prior to Euler’s work, calculus was viewed as the study of curves, rather than the study of functions.
2Infinite series were considered a prerequisite for the study of calculus even prior to Euler’s work, and were used

extensively by Newton, Leibniz and other seventeenth century mathematicians.
3As recently as the 1970s, most students used tables rather than calculators to find logarithms.
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limiting value of (1 + 1/j)j and as the infinite series 1 +
1

1
+

1

1 · 2
+

1

1 · 2 · 3
+

1

1 · 2 · 3 · 4
+ · · ·. As

was common in his day, Euler worked with infinitely small and large numbers, a practice that has
largely been abandoned with the modern definition of limit. Nevertheless, Euler used his infinitely
small and large numbers with great skill, as we shall see.4

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Section 114. Since a0 = 1, and as the exponent of a increases, the value of the power
increases at the same time, provided a is a number greater than unity, it follows that if the
exponent exceeds zero by an infinitely small amount, then the power itself will also exceed 1
by an infinitely small amount. Letting ω be an infinitely small number . . ., then aω = 1+ ψ,
where ψ is also an infinitely small number . . . . Letting ψ = kω, so that aω = 1 + kω; and
taking a as the base of the logarithm, we will have ω = log(1 + kω).

EXAMPLE

That it may be more clearly seen how the number k depends on the base a, let us
suppose that a = 10; and let us seek from the vulgar tables5 the logarithm of a number
which exceeds 1 by a small amount, say 1 + 1

1000000 , so that kω = 1
1000000 ; this will be

log
(
1 + 1

1000000

)
= log

(
1000001
1000000

)
= 0.00000043429 = ω. Hence, kω = 0.0000010000 and

k = 100000
43429 = 2.30258; from this it is clear that k is a finite number depending on the value

of the base a. For if another number is set as the base a, then the logarithm [base a] of the
same number 1 + kω will have a given ratio with the former,6 so that at the same time a
different value of the variable k will appear.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 1 To gain some visual insight into what Euler was doing, plot y = aω and y = 1 + kω

for a = 10 and k = 100000
43429 ≈ 2.30258. Euler claimed these quantities aω and 1 + kω

should be identical for “infinitely small” ω. Would changing the k value to something
else, say −3, change anything about your plot and this claim?

Task 2 Use Euler’s ideas and a scientific calculator to estimate k for a = 2. Get a visual check
by plotting y = 2ω and y = 1 + kω together.

Euler was interested in finding an a value for which exponential and logarithmic expansions are
nice and easy to work with. He derived a series expansion in his Section 115.

4All translations of Euler excerpts in this project were prepared by Janet Heine Barnett, 2022.
5These are tables of values for the common, or base 10, logarithmic function. Such tables would have an entry that

exceeds 1 by “a small amount” for the specified base.
6Translator’s Note: By “the former” Euler meant log10(1 + kω). In essence, he was referencing here the fact that,

for any given base value a, the ratio loga(x)

log10(x)
is constant for all x.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Section 115. Since aω = 1 + kω, we will have ajω = (1 + kω)j , for whatever number is
substituted for j.7 It will therefore follow that

ajω = 1 +
j

1
kω +

j (j − 1)

1 · 2
k2ω2 +

j (j − 1) (j − 2)

1 · 2 · 3
k3ω3 + . . . (1)

Therefore, if we set j = z
ω , and z denotes an arbitrary finite number, then because ω is

an infinitely small number, j will be an infinitely large number; hence ω = z
j , so that ω

is a fraction having an infinite denominator, and therefore infinitely small, as is assumed.
Therefore substituting z

j in place of ω, we will have

az = (1 + kz/j)j = 1 +
1

1
kz +

1 (j − 1)

1 · 2 · j
k2z2 (2)

+
1 (j − 1) (j − 2)

1 · 2j · 3j
k3z3 +

1 (j − 1) (j − 2) (j − 3)

1 · 2j · 3j · 4j
k4z4 + . . . ,

where this equation will be true when an infinitely large number is substituted for j. But then
k is a number defined by a, as we have just seen.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

We would like to capture the spirit of Euler’s ideas but put his work on modern foundations by
avoiding infinitely small and large numbers.

Task 3 Assume a > 1 and ω is a small, positive finite number defined by aω = 1 + ψ and
ψ = kω.

(a) What theorem was Euler using to obtain (1)? For what ψ values is this series
known to converge?

(b) Verify the algebraic details needed to obtain (1) from this theorem.

Task 4 Assume a > 1 and ω is a small, positive finite number defined by aω = 1 + ψ and
ψ = kω, and j = z/ω.

(a) What is the general nth term in the series (2)?
(b) Verify the algebraic details needed to obtain (2) from j = z/ω and (1).

Euler next used his infinitely large numbers to produce an infinite series expression for his ideal
logarithm base a. At this point in his book, Euler set z = 1 to find his special value for a.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Section 116. Now since j is an infinitely large number, j − 1

j
= 1; for it is clear that

the greater the number substituted for j, the more the actual value of the fraction j − 1

j

7Translator’s Note: In this project, we use the letter j where Euler instead used the letter i, since the latter is
open to misinterpretation as

√
−1 by today’s readers. Although Euler was responsible for introducing the notational

convention i =
√
−1, he did not start using it himself until 1777.
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will approach unity, hence if j is a number greater than any assignable quantity, the fraction
j − 1

j
itself will become equal to 1. For a similar reason we will have j − 2

j
= 1; j − 3

j
= 1;

and so on; hence it follows that j − 1

2j
=

1

2
; j − 2

3j
=

1

3
; j − 3

4j
=

1

4
; and so on. Therefore,

with these values substituted [into equation (2)], we will have az = 1+
kz

1
+
k2z2

1 · 2
+

k3z3

1 · 2 · 3
+

k4z4

1 · 2 · 3 · 4
+ . . . to infinity. And this equation at the same time illustrates the relationship

between the numbers a and k, for if z = 1, we will have

a = 1 +
k

1
+

k2

1 · 2
+

k3

1 · 2 · 3
+ · · · , (3)

. . . .
Section 122. Since in order to establish a system of logarithms it is possible to take the

base a at will, it may be assumed that [a is chosen] so that k = 1. Let us therefore suppose
that k = 1, and by the series found above (Section 116),

a = 1 +
1

1
+

1

1 · 2
+

1

1 · 2 · 3
+ · · · , (4)

whose terms, if converted into decimal fractions and actually added, will produce the value
a = 2.71828182845904523536028, for which the last digit is correct.8 Logarithms are already
constructed for this base, [and] are usually called natural logarithms or hyperbolic logarithms,
since the quadrature of the hyperbola9 can be expressed by such a logarithm. But for the
sake of brevity we will consistently put for this number 2.718281828459 . . . the letter e, which
will thus denote the base of the natural or hyperbolic logarithms, . . . . . . .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 5 Why do you think Euler chose a “so that k = 1” in his series (3)?

We can obtain an expression for Euler’s special a value as the limit of a sequence, and then use
modern methods with Euler’s ideas to prove this sequence converges. To justify Euler’s work from a
modern point of view, let’s look at the key equation (2)

(1 + kz/j)j = 1 +
1

1
kz +

1 (j − 1)

1 · 2 · j
k2z2 +

1 (j − 1) (j − 2)

1 · 2j · 3j
k3z3 + · · ·

and set k = 1, z = 1 as Euler did, but suppose j is a natural number.

Task 6 Apply the finite Binomial Theorem for natural number j to expand (1 + 1/j)j as a
finite series and show that

(1 + 1/j)j = 1+
1

1
+
1 (j − 1)

1 · 2 · j
+
1 (j − 1) (j − 2)

1 · 2j · 3j
+· · ·+1 (j − 1) (j − 2) · · · (j − (j − 1))

1 · 2j · 3j · · · · (jj)
.

8Translator’s Note: This was Euler’s way of saying that he has computed an approximation of e that is correct to
23 decimal places — all without a calculator!

9The phrase “quadrature of the hyperbola” refers to the area of a region between the x-axis and hyperbola y = 1/x.
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Now we form a sequence (cj)
∞
j=1 with cj = (1 + 1/j)j . If we can justify taking the limit of this

sequence, we should obtain Euler’s number e.

Task 7 Show that

cj = 1+
1

1
+
(1− 1/j)

1 · 2
+
(1− 1/j) (1− 2/j)

1 · 2 · 3
+· · ·+(1− 1/j) (1− 2/j) · · · (1− (j − 1) /j)

1 · 2 · 3 · · · · · j
.

Task 8 Write out cj+1 and compare it term by term with cj . What can you conclude about
the sequence (cj)

∞
j=1?

Task 9 Compare cj to a geometric series to show the sequence (cj) is bounded.

Hints: Use the series form for cj you found in Task 7, and compare it term by term
with a geometric series.

Task 10 Apply the Monotone Convergence Theorem to give a modern proof that lim
j→∞

(1 + 1/j)j

exists.

We now have a modern justification that the constant e can be defined as e = lim
j→∞

(1 + 1/j)j .
You may recall from introductory calculus courses that Euler was correct with the series expansion
(4) for e. A modern justification of the series expansion for e is beyond the scope of this project.10

Task 11 This task should give you some appreciation for Euler’s series (4) when he wanted to
find a good decimal approximation for e. Remember that he had no computers at his
disposal!

(a) Use technology to find both c4 = (1 + 1/4)4 and the partial sum P4 =
∑4

n=0

1

n!
.

(b) How close are c4 and P4 to Euler’s Section 122 decimal approximation to e, and
which is more accurate?

(c) Use technology to find a value of j for which cj is closer to e than P4.

Task 12 Euler wanted to use his work to express the function ez as an infinite series. Use Euler’s
(2) and his Section 116 infinitesimal methods to find an infinite series expression for
ez. How does this series compare with the Taylor series for ez you learned about in
introductory calculus?

10Augustin-Louis Cauchy (1789–1857) proved the convergence of this series expansion for e in his 1821 textbook
Cours d’Analyse (Course on Analysis). The details of Cauchy’s proof, along with a more thorough exploration of
today’s methods for studying infinite series, can be found in the project “Abel and Cauchy on a Rigorous Approach to
Infinite Series,” [Ruch, 2017].
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Recall (from Euler’s Section 114) that Euler was investigating how the number k depends on the
logarithm base a, where ω = loga (1 + kω) with “infinitely small” ω. We can re-interpret this equation
without reference to infinitesimals in terms of the following limit:

lim
ω→0

ω

loga (1 + kω)
. (5)

The final task below uses this limit to reinforce the connection between the values of a and k.

Task 13 As you may recall, the derivative of loga x is 1

x ln a
. You will need this formula for

part (a).

(a) Use introductory calculus techniques to find the limit (5) in terms of a and k.
(b) Since ω = loga (1 + kω) with “infinitely small” ω, explain why this limit (5) should

be 1 for any pair a, k where k is chosen to depend properly on a.
(c) In particular, when a = e, what value of k is required for limit (5) to be 1?
(d) Use limit (5) to find the exact values of k when a = 10 and a = 2. Use your

answers to reflect on the decimal values for k and the graphs of y = aω, y = 1+kω

that you found in Task 1 and Task 2.
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Notes to Instructors

PSP Content: Topics and Goals
This Primary Source Project (PSP) is designed to be used in a course on real analysis or foundations
of the real numbers. Specifically, its content goals are to:

1. Rigorously prove that the sequence {(1 + 1/j)j} converges to e by modernizing Euler’s proof.

2. Develop Euler’s idea of e as an optimal logarithm base.

3. Understand the relationship between the series and sequence expressions for e, as developed
by Euler.

Student Prerequisites
The project is written for a course in Real Analysis with the assumption that students have studied
sequences and are familiar with the Monotone Convergence Theorem. If students are rusty with the
Binomial Theorem or the derivative of loga (x), some quick “Just in Time” review will be needed.

PSP Design and Task Commentary
The heart of this project for an introductory real analysis course is giving a modern justification
of e = lim

j→∞
(1 + 1/j)j using Euler’s ideas along with some modern theory. The approach using

the Monotone Convergence Theorem, as outlined in Tasks 6–10, is a common approach in current
analysis textbooks. Reading about it in Euler’s own words gives context to the exercises and some
appreciation of his dexterity with infinitesimals and series, as well as the close connection with e as a
logarithm base to motivate the definition. This series development of ez is an interesting alternative
to the Taylor series approach students have seen in introductory calculus courses.

One question for instructors and students alike is how formally and thoroughly to treat Euler’s
manipulations of infinitely large and small numbers. The project author is of the opinion that
students already have a personal sense of what these objects are and how they should work, having
been through introductory calculus courses. Euler made a good case for his development in the
passages quoted in the project so students can follow his reasoning. Since this project is designed for
an introductory real analysis course, a lengthy discussion of infinitesimal calculus is not appropriate.
However, instructors for other courses may want to spend more time on these issues.

In Tasks 1 and 2, it is interesting to note that if students try to approximate k better by using
smaller values of kω, they may run into technology problems. For example, a TI-84 calculator

evaluates 10−10

log10 (1 + 10−10)
to be 2.302585093, but the Mathematica 10 computer algebra system

does not fare so well, producing 2.30258490259. This is likely the case because the TI calculator uses
base 10 floating point arithmetic, while Mathematica uses base 2. Using kω = 10−6 accomplishes the
main goal while avoiding technology problems. Students revisit these k values in the last exercise of
the project.
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Suggestions for Classroom Implementation
This project takes around two 75-minute class sessions plus homework using the following method-
ology, very similar to David Pengelley’s “A, B, C” method described on his website.11

1. Students do some advance reading and light preparatory exercises before each class. This
should be counted as part of the project grade to ensure students take it seriously. Be careful
not to get carried away with the exercises or your grading load will get out of hand! Some
instructors have students write questions or summaries based on the reading.

2. Class time is largely dedicated to students working in groups on the project — reading the
material and working exercises. As they work through the project, the instructor circulates
through the groups asking questions and giving hints or explanations as needed. Occasional
student presentations may be appropriate. Occasional full class guided discussions may be
appropriate, particularly for the beginning and end of class, and for difficult sections of the
project. I have found that a “participation” grade suffices for this component of the student
work. Some instructors collect the work. If a student misses class, I have them write up
solutions to the exercises they missed. This is usually a good incentive not to miss class!

3. Some exercises are assigned for students to do and write up outside of class. Careful grading of
these exercises is very useful, both to students and faculty. The time spent grading can replace
time an instructor might otherwise spend preparing for a lecture.

Sample Implementation Schedule (based on a 75-minute class period)

Full implementation of the project can be accomplished in two 75-minute class sessions, as outlined
below.

• Day 1. Assign through Task 1 as advance preparation work; complete Tasks 2–6 in-class.

• Day 2. Assign Task 7 as advance preparation work; complete Tasks 8, 10, 13 in-class.

• Homework. Tasks 9, 11, 12.

Connections to other Primary Source Projects
The following additional projects based on primary sources are also freely available for use in an in-
troductory real analysis course; the PSP author name for each is listed parenthetically, along with the
project topic if this is not evident from the PSP title. Shorter PSPs that can be completed in at most
2 class periods are designated with an asterisk (*). Classroom-ready versions of the last two projects
listed can be downloaded from https://digitalcommons.ursinus.edu/triumphs\_topology; all
other listed projects are available at https://digitalcommons.ursinus.edu/triumphs\_analysis.

• Why be so Critical? 19th Century Mathematics and the Origins of Analysis* (Janet Heine
Barnett)

11https://web.nmsu.edu/~davidp/
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• Investigations into Bolzano’s Bounded Set Theorem (David Ruch)
• Stitching Dedekind Cuts to Construct the Real Numbers (Michael Saclolo)

Also suitable for use in an Introduction to Proofs course.
• Investigations Into d’Alembert’s Definition of Limit ∗ (David Ruch)

A second version of this project suitable for use in a Calculus 2 course is also available.
• Bolzano on Continuity and the Intermediate Value Theorem (David Ruch)
• Understanding Compactness: Early Work, Uniform Continuity to the Heine-Borel Theorem

(Naveen Somasunderam)
• An Introduction to a Rigorous Definition of Derivative (David Ruch)
• Rigorous Debates over Debatable Rigor: Monster Functions in Real (Janet Heine Barnett;

properties of derivatives, Intermediate Value Property)
• The Mean Value Theorem(David Ruch)
• The Definite Integrals of Cauchy and Riemann (David Ruch)
• Henri Lebesgue and the Development of the Integral Concept* (Janet Heine Barnett)
• Abel and Cauchy on a Rigorous Approach to Infinite Series (David Ruch)
• The Cantor set before Cantor* (Nicholas A. Scoville)

Also suitable for use in a course on topology.
• Topology from Analysis* (Nicholas A. Scoville)

Also suitable for use in a course on topology.
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