Fourier Series and Fourier Transform - III

Certain feelings in my body lead me to believel that I have to stduy Fourier Series and Fourier Transform for a better understanding of probability theory, measure theory,entroy and information theory.

This is the third part of the series on Fourier Series and Fourier Transform. In the first two parts, we have discussed the Fourier Series. From this part onwards, we will forcus on the Fourier Transform. In a nutshell, Fourier transform could be thought of as the extension of Fourier Series to the continuous domain, which means that we could extend the Fourier Series to the functions which are not periodic.

Review of Fourier Series

For a periodic function f(x)f(x) with period 11 (you can normalize the period to 11 by scaling the xx-axis), we can write it as a Fourier Series:

f(x)=n=cne2πinx f(x) = \sum_{n=-\infty}^{\infty} c_n e^{2\pi i n x}

where cnc_n is the Fourier coefficient, which is the projection of f(x)f(x) onto the basis e2πinxe^{2\pi i n x}:

cn=f(x),e2πinx=01f(x)e2πinxdx c_n =\langle f(x), e^{2\pi i n x} \rangle = \int_0^1 f(x) e^{-2\pi i n x} dx

where cnc_n is the Fourier coefficient, which is the projection of f(x)f(x) onto the basis e2πinxe^{2\pi i n x}.

Conside a square wave of period 11, which is defined as:

f(x)={10x<12112x<1 f(x) = \begin{cases} 1 & 0 \leq x < \frac{1}{2} \\ -1 & \frac{1}{2} \leq x < 1 \end{cases}

square wave
Figure 1. Illustration of square wave.

We have calculated the Fourier coefficients of the square wave in the previous part:

f(x)=n is odd2πine2πinx=2πi(2k+1)e2πi(2k+1)x=2πi(2k+1)(e2πi(2k+1)xe2πi(2k+1)x)=k=04π(2k+1)sin[2π(2k+1)x]=4πk=012k+1sin[2π(2k+1)x] \begin{aligned} f(x) & = \sum_{n \text{ is odd}} \frac{2}{\pi i n}e^{2\pi i n x} \\ & = \sum_{-\infty}^{\infty} \frac{2}{\pi i (2k+1)}e^{2\pi i (2k+1) x} \\ & = \sum_{-\infty}^{\infty} \frac{2}{\pi i (2k+1)}(e^{2\pi i (2k+1) x} - e^{-2\pi i (2k+1) x}) \\ & = \sum_{k=0}^{\infty} \frac{4}{\pi (2k+1)} \sin[2\pi (2k+1) x] \\ & = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{2k+1} \sin[2\pi (2k+1) x] \end{aligned}

The above formula shows the fourier coefficients of the square wave is zero for even nn and non-zero for odd nn. And each component of the Fourier Series is a sine wave with frequency 2k+12k+1. The following figure shows how the square wave is constructed by the Fourier Series.

fourier series
Figure 2. Illustration of Fourier Series (this figure was taken from TikZ.net by Izaak Neutelings).

This gives us a hint that we can use Fourier Series to decompose a periodic function into a series of sine waves with different frequencies. Now, we want to extend this idea to the non-periodic functions.

Fourier Transform

We now define the Fourier Transform of a function f(t)f(t) as:

f^(s)=f(t)e2πistdt \hat{f}(s) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i s t} dt

For any sRs \in \mathbb{R}, we can define a function gs(t)=e2πistg_s(t) = e^{-2\pi i s t}. Then, we can write the Fourier Transform as:

f^(s)=f(t),gs(t) \hat{f}(s) = \langle f(t), g_s(t) \rangle

which is the projection of f(t)f(t) onto the basis gs(t)g_s(t). Moreover, for any sRs \in \mathbb{R}, integrating f(t)f(t) against the complex-valued function gs(t)g_s(t) gives us a complex-valued function f^(s)\hat{f}(s) of ss.

The inverse Fourier Transform is defined as:

f(t)=f^(s)e2πistds f(t) = \int_{-\infty}^{\infty} \hat{f}(s) e^{2\pi i s t} ds

Now, let’s check an example. Consider the triangle function, defined by

(t)={1tt10t>1 \wedge (t) = \begin{cases} 1 - |t| & |t| \leq 1 \\ 0 & |t| > 1 \end{cases}

For the Fourier transform,

F[(t)]=(t)e2πistdt=11(1t)e2πistdt=10(1+t)e2πistdt+01(1t)e2πistdt \begin{aligned} \mathcal{F}[\wedge(t)] & = \int_{-\infty}^{\infty} \wedge(t) e^{-2\pi i s t} dt \\ & = \int_{-1}^{1} (1 - |t|) e^{-2\pi i s t} dt \\ & = \int_{-1}^{0} (1 + t) e^{-2\pi i s t} dt + \int_{0}^{1} (1 - t) e^{-2\pi i s t} dt \end{aligned}

Now, let’s consider the first integral:

A(s)=10(1+t)e2πistdt A(s) = \int_{-1}^{0} (1 + t) e^{-2\pi i s t} dt

Let u=tu = -t, then du=dtdu = -dt. Then, we have:

A(s)=10(1u)e2πisu(du)=01(1u)e2πisudu \begin{aligned} A(s) & = \int_{1}^{0} (1 - u) e^{2\pi i s u} (-du) \\ & = \int_{0}^{1} (1 - u) e^{2\pi i s u} du \\ \end{aligned}

This gives us:

A(s)=01(1u)e2πisudu A(-s) = \int_{0}^{1} (1 - u) e^{-2\pi i s u} du

Thus,

F[(t)]=A(s)+A(s) \mathcal{F}[\wedge(t)] = A(s) + A(-s)

Now, let’s consider the first integral:

A(s)=10(1+t)e2πistdt=[(1+t)e2πist2πis]1010e2πist2πisdt=12πis12πis10e2πistdt=12πis[14π2s2e2πist]10=12πis14π2s2+14π2s2e2πis=12πis+14π2s2(1e2πis) \begin{aligned} A(s) & = \int_{-1}^{0} (1 + t) e^{-2\pi i s t} dt \\ & = [(1+t) \frac{e^{-2\pi i s t}}{-2\pi i s}]_{-1}^{0} - \int_{-1}^{0} \frac{e^{-2\pi i s t}}{-2\pi i s} dt \\ & = \frac{1}{2\pi i s} - \frac{1}{-2\pi i s} \int_{-1}^{0} e^{-2\pi i s t} dt \\ & = \frac{1}{2\pi i s} - [ \frac{1}{-4\pi^2 s^2} e^{-2\pi i s t}]_{-1}^{0} \\ & = \frac{1}{2\pi i s} - \frac{1}{4\pi^2 s^2} + \frac{1}{4\pi^2 s^2} e^{2\pi i s} \\ & = - \frac{1}{2 \pi is } + \frac{1}{4\pi^2 s^2} (1 - e^{2\pi i s}) \end{aligned}

Then

F[(t)]=A(s)+A(s)=12πis+14π2s2(1e2πis)12πi(s)+14π2(s)2(1e2πis)=(sinπsπs)2=sinc2(πs) \begin{aligned} \mathcal{F}[\wedge(t)] & = A(s) + A(-s) \\ & = - \frac{1}{2 \pi is } + \frac{1}{4\pi^2 s^2} (1 - e^{2\pi i s}) - \frac{1}{2 \pi i (-s) } + \frac{1}{4\pi^2 (-s)^2} (1 - e^{-2\pi i s}) \\ & = \big ( \frac{\sin \pi s}{\pi s} \big )^2 \\ & = \text{sinc}^2(\pi s) \end{aligned}

Here is the graph of the Fourier transform of the triangle function:

As you can see, we are transofrming a function from the time domain to the frequency domain. Both functions are continuous.

After introducing the Fourier transform, we will list some properties of the Fourier transform.

Convolution