

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 4: Hashing

Lecture 4: Hashing

Review

Data Structure

Operations O(·)
Container Static Dynamic Order
build(X) find(k) insert(x)

delete(k)

find min()

find max()

find prev(k)

find next(k)

Array n n n n n

Sorted Array n log n log n n 1 log n

• Idea! Want faster search and dynamic operations. Can we find(k) faster than Θ(log n)?

• Answer is no (lower bound)! (But actually, yes...!?)

Comparison Model
• In this model, assume algorithm can only differentiate items via comparisons

• Comparable items: black boxes only supporting comparisons between pairs

• Comparisons are <, ≤, >, ≥, =, =6 , outputs are binary: True or False

• Goal: Store a set of n comparable items, support find(k) operation

• Running time is lower bounded by # comparisons performed, so count comparisons!

Decision Tree

• Any algorithm can be viewed as a decision tree of operations performed

• An internal node represents a binary comparison, branching either True or False

• For a comparison algorithm, the decision tree is binary (draw example)

• A leaf represents algorithm termination, resulting in an algorithm output

• A root-to-leaf path represents an execution of the algorithm on some input

• Need at least one leaf for each algorithm output, so search requires ≥ n + 1 leaves

2 Lecture 4: Hashing

Comparison Search Lower Bound

• What is worst-case running time of a comparison search algorithm?

• running time ≥ # comparisons ≥ max length of any root-to-leaf path ≥ height of tree

• What is minimum height of any binary tree on ≥ n nodes?

• Minimum height when binary tree is complete (all rows full except last)

• Height ≥ dlg(n + 1)e − 1 = Ω(log n), so running time of any comparison sort is Ω(log n)

• Sorted arrays achieve this bound! Yay!

• More generally, height of tree with Θ(n) leaves and max branching factor b is Ω(logb n)

• To get faster, need an operation that allows super-constant ω(1) branching factor. How??

Direct Access Array

• Exploit Word-RAM O(1) time random access indexing! Linear branching factor!

• Idea! Give item unique integer key k in {0, . . . , u − 1}, store item in an array at index k

• Associate a meaning with each index of array

• If keys fit in a machine word, i.e. u ≤ 2w , worst-case O(1) find/dynamic operations! Yay!

• 6.006: assume input numbers/strings fit in a word, unless length explicitly parameterized

• Anything in computer memory is a binary integer, or use (static) 64-bit address in memory

• But space O(u), so really bad if n � u... :(

• Example: if keys are ten-letter names, for one bit per name, requires 2610 ≈ 17.6 TB space

• How can we use less space?

Hashing

• Idea! If n � u, map keys to a smaller range m = Θ(n) and use smaller direct access array

• Hash function: h(k) : {0, . . . , u − 1} → {0, . . . ,m − 1} (also hash map)

• Direct access array called hash table, h(k) called the hash of key k

• If m � u, no hash function is injective by pigeonhole principle

3 Lecture 4: Hashing

• Always exists keys a, b such that h(a) = h(b) → Collision! :(

• Can’t store both items at same index, so where to store? Either:

– store somewhere else in the array (open addressing)

∗ complicated analysis, but common and practical

– store in another data structure supporting dynamic set interface (chaining)

Chaining

• Idea! Store collisions in another data structure (a chain)

• If keys roughly evenly distributed over indices, chain size is n/m = n/Ω(n) = O(1)!

• If chain has O(1) size, all operations take O(1) time! Yay!

• If not, many items may map to same location, e.g. h(k) = constant, chain size is Θ(n) :(

• Need good hash function! So what’s a good hash function?

Hash Functions

Division (bad): h(k) = (k mod m)

• Heuristic, good when keys are uniformly distributed!

• m should avoid symmetries of the stored keys

• Large primes far from powers of 2 and 10 can be reasonable

• Python uses a version of this with some additional mixing

• If u � n, every hash function will have some input set that will a create O(n) size chain

• Idea! Don’t use a fixed hash function! Choose one randomly (but carefully)!

4 Lecture 4: Hashing

Universal (good, theoretically): hab(k) = (((ak + b) mod p) mod m)

• Hash Family H(p, m) = {hab | a, b ∈ {0, . . . , p − 1} and a 6= 0}

• Parameterized by a fixed prime p > u, with a and b chosen from range {0, . . . , p − 1}

• H is a Universal family: Pr {h(ki) = h(kj)} ≤ 1/m ∀ki =6 kj ∈ {0, . . . , u − 1}
h∈H

• Why is universality useful? Implies short chain lengths! (in expectation)

• Xij indicator random variable over h ∈ H: Xij = 1 if h(ki) = h(kj), Xij = 0 otherwise P
• Size of chain at index h(ki) is random variable Xi = j Xij

• Expected size of chain at index h(ki) ()X X X
E {Xi} = E Xij = E {Xij } = 1 + E {Xij }

h∈H h∈H h∈H h∈H
j j j=6 iX

= 1 + (1) Pr {h(ki) = h(kj)} + (0) Pr {h(ki) =6 h(kj)}
h∈H h∈H

j 6=iX
≤ 1 + 1/m = 1 + (n − 1)/m

j 6=i

• Since m = Ω(n), load factor α = n/m = O(1), so O(1) in expectation!

Dynamic

• If n/m far from 1, rebuild with new randomly chosen hash function for new size m

• Same analysis as dynamic arrays, cost can be amortized over many dynamic operations

• So a hash table can implement dynamic set operations in expected amortized O(1) time! :)

Data Structure

Operations O(·)
Container Static Dynamic Order
build(X) find(k) insert(x)

delete(k)

find min()

find max()

find prev(k)

find next(k)

Array n n n n n

Sorted Array n log n log n n 1 log n

Direct Access Array u 1 1 u u

Hash Table n(e) 1(e) 1(a)(e) n n

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

