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Lecture 4: Hashing 

Review 

Data Structure 

Operations O(·) 
Container Static Dynamic Order 
build(X) find(k) insert(x) 

delete(k) 

find min() 

find max() 

find prev(k) 

find next(k) 

Array n n n n n 

Sorted Array n log n log n n 1 log n 

• Idea! Want faster search and dynamic operations. Can we find(k) faster than Θ(log n)? 

• Answer is no (lower bound)! (But actually, yes...!?) 

Comparison Model 
• In this model, assume algorithm can only differentiate items via comparisons 

• Comparable items: black boxes only supporting comparisons between pairs 

• Comparisons are <, ≤, >, ≥, =, =6 , outputs are binary: True or False 

• Goal: Store a set of n comparable items, support find(k) operation 

• Running time is lower bounded by # comparisons performed, so count comparisons! 

Decision Tree 

• Any algorithm can be viewed as a decision tree of operations performed 

• An internal node represents a binary comparison, branching either True or False 

• For a comparison algorithm, the decision tree is binary (draw example) 

• A leaf represents algorithm termination, resulting in an algorithm output 

• A root-to-leaf path represents an execution of the algorithm on some input 

• Need at least one leaf for each algorithm output, so search requires ≥ n + 1 leaves 
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Comparison Search Lower Bound 

• What is worst-case running time of a comparison search algorithm? 

• running time ≥ # comparisons ≥ max length of any root-to-leaf path ≥ height of tree 

• What is minimum height of any binary tree on ≥ n nodes? 

• Minimum height when binary tree is complete (all rows full except last) 

• Height ≥ dlg(n + 1)e − 1 = Ω(log n), so running time of any comparison sort is Ω(log n) 

• Sorted arrays achieve this bound! Yay! 

• More generally, height of tree with Θ(n) leaves and max branching factor b is Ω(logb n) 

• To get faster, need an operation that allows super-constant ω(1) branching factor. How?? 

Direct Access Array 

• Exploit Word-RAM O(1) time random access indexing! Linear branching factor! 

• Idea! Give item unique integer key k in {0, . . . , u − 1}, store item in an array at index k 

• Associate a meaning with each index of array 

• If keys fit in a machine word, i.e. u ≤ 2w , worst-case O(1) find/dynamic operations! Yay! 

• 6.006: assume input numbers/strings fit in a word, unless length explicitly parameterized 

• Anything in computer memory is a binary integer, or use (static) 64-bit address in memory 

• But space O(u), so really bad if n � u... :( 

• Example: if keys are ten-letter names, for one bit per name, requires 2610 ≈ 17.6 TB space 

• How can we use less space? 

Hashing 

• Idea! If n � u, map keys to a smaller range m = Θ(n) and use smaller direct access array 

• Hash function: h(k) : {0, . . . , u − 1} → {0, . . . ,m − 1} (also hash map) 

• Direct access array called hash table, h(k) called the hash of key k 

• If m � u, no hash function is injective by pigeonhole principle 
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• Always exists keys a, b such that h(a) = h(b) → Collision! :( 

• Can’t store both items at same index, so where to store? Either: 

– store somewhere else in the array (open addressing) 

∗ complicated analysis, but common and practical 

– store in another data structure supporting dynamic set interface (chaining) 

Chaining 

• Idea! Store collisions in another data structure (a chain) 

• If keys roughly evenly distributed over indices, chain size is n/m = n/Ω(n) = O(1)! 

• If chain has O(1) size, all operations take O(1) time! Yay! 

• If not, many items may map to same location, e.g. h(k) = constant, chain size is Θ(n) :( 

• Need good hash function! So what’s a good hash function? 

Hash Functions 

Division (bad): h(k) = (k mod m) 

• Heuristic, good when keys are uniformly distributed! 

• m should avoid symmetries of the stored keys 

• Large primes far from powers of 2 and 10 can be reasonable 

• Python uses a version of this with some additional mixing 

• If u � n, every hash function will have some input set that will a create O(n) size chain 

• Idea! Don’t use a fixed hash function! Choose one randomly (but carefully)! 
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Universal (good, theoretically): hab(k) = (((ak + b) mod p) mod m) 

• Hash Family H(p, m) = {hab | a, b ∈ {0, . . . , p − 1} and a 6= 0} 

• Parameterized by a fixed prime p > u, with a and b chosen from range {0, . . . , p − 1} 

• H is a Universal family: Pr {h(ki) = h(kj )} ≤ 1/m ∀ki =6 kj ∈ {0, . . . , u − 1}
h∈H 

• Why is universality useful? Implies short chain lengths! (in expectation) 

• Xij indicator random variable over h ∈ H: Xij = 1 if h(ki) = h(kj ), Xij = 0 otherwise P 
• Size of chain at index h(ki) is random variable Xi = j Xij 

• Expected size of chain at index h(ki) ( )X X X 
E {Xi} = E Xij = E {Xij } = 1 + E {Xij }

h∈H h∈H h∈H h∈H 
j j j=6 iX 

= 1 + (1) Pr {h(ki) = h(kj )} + (0) Pr {h(ki) =6 h(kj )}
h∈H h∈H 

j 6=iX 
≤ 1 + 1/m = 1 + (n − 1)/m 

j 6=i 

• Since m = Ω(n), load factor α = n/m = O(1), so O(1) in expectation! 

Dynamic 

• If n/m far from 1, rebuild with new randomly chosen hash function for new size m 

• Same analysis as dynamic arrays, cost can be amortized over many dynamic operations 

• So a hash table can implement dynamic set operations in expected amortized O(1) time! :) 

Data Structure 

Operations O(·) 
Container Static Dynamic Order 
build(X) find(k) insert(x) 

delete(k) 

find min() 

find max() 

find prev(k) 

find next(k) 

Array n n n n n 

Sorted Array n log n log n n 1 log n 

Direct Access Array u 1 1 u u 

Hash Table n(e) 1(e) 1(a)(e) n n 
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